2 research outputs found

    FE tool for drape modelling and resin pocket prediction of fully embedded optical fiber sensor system

    Get PDF
    This work highlights some of the achievements obtained within the EU FP7 SmartFiber project, aiming to develop a fully embeddable optical fiber sensor system including the interrogator chip. The focus is on resolving issues holding back the industrial uptake of optical sensing technology. In a first section, the development of a placement head for automated lay-down of an optical sensor line (including the SmartFiber interrogator system) during composite manufacturing is discussed. In a second section, the attention is shifted to the occurrence of resin pockets surrounding inclusions such as the SmartFiber interrogator. A computationally efficient F.E. approach is presented capable of accurately predicting resin pocket geometries. Both small (i.e. optical fiber sensors) and large (i.e. the SmartFiber interrogator) inclusions are considered, and the F.E. predictions are validated with experimental observations

    A Micro-Computed Tomography Technique to Study the Quality of Fibre Optics Embedded in Composite Materials

    Get PDF
    Quality of embedment of optical fibre sensors in carbon fibre-reinforced polymers plays an important role in the resultant properties of the composite, as well as for the correct monitoring of the structure. Therefore, availability of a tool able to check the optical fibre sensor-composite interaction becomes essential. High-resolution 3D X-ray Micro-Computed Tomography, or Micro-CT, is a relatively new non-destructive inspection technique which enables investigations of the internal structure of a sample without actually compromising its integrity. In this work the feasibility of inspecting the position, the orientation and, more generally, the quality of the embedment of an optical fibre sensor in a carbon fibre reinforced laminate at unit cell level have been proven
    corecore